
Manual Geometry Algorithms v2.0

Contact information:
 Mail: jobberwockysoftware@gmail.com

 Forum: https://forum.unity.com/threads/geometry-algorithms.409854/

 Facebook: https://www.facebook.com/JobberwockySoftware/

 Twitter: https://twitter.com/JobberwockySoft

Changelog
 Version 1.x => 2.0

o All references to the old asset name have been removed, this means all namespaces

have been updated: all namespaces with TriangulationForUnity in it are now

changed to use GeometryAlgorithms instead.

o All Generator objects have been removed and changed to API objects. Thus, e.g.

instead of calling new HullGenerator(), you now use new HullAPI().

o The new API objects all inherit from the abstract ThreadingAPI class. Now, every

method can be used with threading by using its async counterpart. This means that if

you want to run the Triangulation2D method in a separate thread you have to call

the Triangulation2DAsync method.

o Input parameters are set by using an IParameters object. Each method only uses

this object to setup its parameters.

o Code that was on the MiConvexhull and Triangle.Net libraries is placed back in their

respective dlls. Previously, I tried to refactor both libraries into one single library, but

it was very difficult to update this when for example a new version of one of the

libraries came out.

Methods & Objects
This part of the manual gives a brief overview of the various methods and objects that exist in

Geometry Algorithms. You can also have a look at various code examples that are available. These

can be found in the "Example" folder and should be self-explanatory.

API objects
The API objects contain the methods to perform the geometrical operations. There are three

different API objects available:

 TriangulationAPI contains methods to generate 2D and 3D triangulations

 HullAPI contains methods to generate 2D and 3D hulls

 VoronoiAPI contains methods to generate 2D and 3D Voronois.

mailto:blackimpsoftware@gmail.com
https://forum.unity.com/threads/geometry-algorithms.409854/
https://www.facebook.com/BlackImpSoftware/
https://twitter.com/BlackImpSoft

Geometry
The Geometry object stores the results of the methods in the API objects. This object is similar to the

Unity Mesh object, but it can be extended and inherited by other objects to store additional

information. In addition, it is possible to create a Unity mesh from this object.

Async
Threading is supported by all methods. You have to call the async version of a certain method. For

example, to run the Triangulation2D method in a different thread, you have to use the

Triangulation2DAsync method. The async methods do not return an object, but you have to provide

a callback function as an input parameter to process the results. In general, I would only recommend

using threading if you are going to do very time-consuming calculations that will freeze the main

thread, because threading is not supported for every platform (e.g. WebGL), and performance-wise

the non-async methods are better with smaller calculations. In the "Example" folder, there is a

specific example to demonstrate the async methods.

Triangulation
Triangulations can be generated by creating a TriangulationAPI object and call the Triangulation2D

or Triangulation3D method. If you want to triangulate 2.5D data then you should use the

Triangulate2D method since it will take into account the height value. The triangulation methods

return a Unity Mesh, if you do not want a Unity object then you call the methods

Triangulation2DRaw or Triangulation3DRaw, which return a Geometry object.

Triangulation2D

Code examples of the Triangulation2D method can be found in the ExampleGeometry2D and

ExampleInteractiveVoronoi2D scripts in the "Example" folder. Both convex and concave

triangulations (with holes) are supported and shown in the examples.

The input parameters are provided by declaring a Triangulation2DParameters object and setting its

parameters. The following parameters are available:

 Points, is an array of Vector3 points that define regular points of a shape. Array can be null if

the Boundary parameter is defined.

 Boundary, is an array of Vector3 points that defines the boundary of a shape. These points

need to be in the correct order. This parameter allows you to create concave shapes. Value

can be null if the Points parameter is defined.

 Holes, is an array containing arrays of Vector3 points where each array represents a different

hole. Again, for this parameter the points need to be in the correct to represent a hole. Value

can be null.

 Delaunay, is an boolean that determines whether the triangulation should be strictly

Delaunay. It is possible that if it is set to true that additional points are added during the

triangulation to meet the Delaunay criteria.

 Side, is an enum that determines which side should be triangulated. There are three options:

Front, Back, Double.

Triangulation3D

Code examples of the Triangulation3D method can be found in the ExampleGeometry3D script in

the "Example" folder. Only convex triangulations are supported.

The input parameters are provided by declaring a Triangulation3DParameters object and setting its

parameters. The following parameters are available:

 Points, is an array of Vector3 points which are used to create the 3D triangulation

 BoundaryOnly, is a boolean that determines whether only the outside of the 3D

triangulation should be returned. If it is false then also each triangle of every tetrahydron is

returned.

 Side, is an enum that determines which side should be triangulated. There are three options:

Front, Back, Double.

Hull
Hulls can be generated by creating a HullAPI object and the Hull2D or Hull3D method. The hull

methods return a Unity Mesh, if you do not want a Unity object then you call the methods

Hull2DRaw or Hull3DRaw, which return a Geometry object. For the 2D case, hulls are defined as a

line, and for the 3D case, hulls are defined as a set of triangles.

Hull2D

Code examples of the Hull2D method can be found in the ExampleGeometry2D script in the

"Example" folder. Both convex and concave hulls are supported. Make sure that you have defined

sufficient points if you want to find a good-fitting concave hull.

The input parameters are provided by declaring a Hull2DParameters object and setting its

parameters. The following parameters are available:

 Points, is an array of Vector3 points for which a hull/boundary is calculated.

 Concavity, is the maximum length that is allowed between each point. Smaller values will

result in a more concave hull, but also increases the calculation time.

Hull3D

Code examples of the Hull3D method can be found in the ExampleGeometry3D script in the

"Example" folder. Only convex hulls are supported.

The input parameters are provided by declaring a Hull3DParameters object and setting its

parameters. The following parameters are available:

 Points, is an array of Vector3 points used to determine the 3D hull.

Voronoi diagram
Voronoi diagrams can be generated by creating a VoronoiAPI object and use the Voronoi2D or

Voronoi3D method. The Voronoi methods return a Unity Mesh, if you do not want a Unity object

then you call the methods Voronoi2DRaw or Voronoi3DRaw, which return a Geometry object.

Voronoi2D

Code examples of the Voronoi2D method can be found in the ExampleGeometry2D and

ExampleInteractiveVoronoi2D scripts in the "Example" folder.

The input parameters are provided by declaring a Voronoi2DParameters object and setting its

parameters. The following parameters are available:

 Points, is an array of Vector3 points used to calculate the Voronoi diagram.

Voronoi3D

Code examples of the Voronoi3D method can be found in the ExampleGeometry3D script in the

"Example" folder.

The input parameters are provided by declaring a Voronoi3DParameters object and setting its

parameters. The following parameters are available:

 Points, is an array of Vector3 points used to calculate the Voronoi diagram.

